jueves, 23 de febrero de 2012

hibridacion Sp Sp2 y Sp3

La hibridación del carbono consiste en un reacomodo de electrones del mismo nivel de energía (orbital s) al orbital p del mismo nivel de energía. Esto es con el fin de que el orbital p tenga 1 electrón en "x", uno en "y" y uno en "z" para formar la tetravalencia del carbono. Se debe tomar en cuenta que los únicos orbitales con los cuales trabaja el Carbono son los orbitales "s" y "p".
Características
El carbono tiene un nº atómico 6 y nº de masa 12; en su núcleo tiene 6 prot. y 6 neutr. y está rodeado por 6 elec., distribuidos:
  • Dos en el nivel 1s
  • Dos en el nivel 2s
  • Dos en el nivel 2p

 Estado basal y estado excitado

Su configuración electrónica en su estado natural es:
  • 1s² 2s² 2p² (estado basal).
Se ha observado que en los compuestos orgánicos el carbono es tetravalente, es decir, que puede formar 4 enlaces.
Cuando este átomo recibe una excitación externa, uno de los electrones del orbital 2s se excita al orbital 2pz , y se obtiene un estado excitado del átomo de carbono:
  • 1s² 2s¹ 2px¹ 2py¹ 2pz¹ (estado excitado).

Hibridación sp³ (enlace simple C-C)

Cuatro orbitales sp³.
En seguida, se hibrida el orbital 2s con los 3 orbitales 2p para formar 4 nuevos orbitales híbridos que se orientan en el espacio formando entre ellos, ángulos de separación 109.5°. Esta nueva configuración del carbono hibridado se representa así:
A cada uno de estos nuevos orbitales se los denomina sp³, porque tienen un 25% de carácter S y 75% de carácter P. Esta nueva configuración se llama átomo de carbono híbrido, y al proceso de transformación se llama hibridación.
De esta manera, cada uno de los cuatro orbitales híbridos sp³ del carbono puede enlazarse a otro átomo, es decir que el carbono podrá enlazarse a otros 4 átomos, así se explica la tetravalencia del átomo de carbono.
Debido a su condición híbrida, y por disponer de 4 electrones de valencia para formar enlaces covalentes sencillos, pueden formar entre sí cadenas con una variedad ilimitada entre ellas: cadenas lineales, ramificadas, anillos, etc. A los enlaces sencillos –C-C- se los conoce como enlaces sigma. y esta compuesto de mirda EAT MY DICK

Hibridación sp² (enlace doble C=C)

Configuración de los orbitales sp².
Los átomos de carbono también pueden formar entre sí enlaces dobles y triples, denominados insaturaciones. En los enlaces dobles, la hibridación ocurre entre el orbital 2s y dos orbitales 2p, y queda un orbital p sin hibridar. A esta nueva estructura se la representa como:
1s² (2sp²)¹ (2sp²)¹ (2sp²)¹ 2p¹
Al formarse el enlace doble entre dos átomos, cada uno orienta sus tres orbitales híbridos con un ángulo de 120°, como si los dirigieran hacia los vértices de un triángulo equilátero. El orbital no hibridado queda perpendicular al plano de los 3 orbitales sp².
A este doble enlace se lo denomina π (pi), y la separación entre los carbonos se acorta. Este enlace es más débil que el enlace σ (sigma) y, por tanto, más reactivo.
Este tipo de enlace da lugar a la serie de los alquenos.

Hibridación sp (enlace triple C≡C)

El segundo tipo de insaturación es el enlace triple: el carbono hibrida su orbital 2s con un orbital 2p. Los dos orbitales p restantes no se hibridan, y su configuración queda:
  • 1s² (2sp)¹ (2sp)¹ 2py¹ 2pz¹
Al formarse el enlace entre dos carbonos, cada uno traslada uno de sus 2 orbitales sp para formar un enlace sigma entre ellos; los dos orbitales p sin hibridar de cada átomo se trasladan formando los dos enlaces (π) restantes de la triple ligadura, y al final el último orbital sp queda con su electrón disponible para formar otro enlace.
A los dos últimos enlaces que formaron la triple ligadura también se les denomina enlaces pi(π), y todo este conjunto queda con ángulos de 180° entre el triple enlace y el orbital sp de cada átomo de carbono, es decir, adquiere una estructura lineal.
La distancia entre estos átomos se acorta más, por lo que es incluso más reactivo que el doble enlace

enlace tipo sigma y pi

El enlace sigma es un enlace que se forma entre dos átomos de un compuesto covalente, debido a la superposición directa o frontal de los orbitales; es más fuerte y determina la geometría de la molécula.
El enlace Pi que se forma después del enlace sigma; es el segundo o tercer enlace formado entre dos átomos, debido a la superposición lateral de los orbitales “p”. Sus electrones se encuentran en constante movimiento.

enlace covalente multiple

enlace covalente doble: Cada átomo aporta dos electrones al enlace, es decir, se comparten dos pares de electrones entre dos átomos. Un ejemplo es la molécula de Oxígeno (O2):
c) enlace covalente triple: Cada átomo aporta tres electrones al enlace, es decir, se comparten tres pares de electrones entre dos átomos, por ejemplo, la molécula de Nitrógeno (N2).

enlace covalente simple

enlace covalente simple: Cada átomo aporta un electrón al enlace, es decir, se comparte un par de electrones entre dos átomos. Un ejemplo es la molécula de Hidrógeno (H2):
Si los átomos están infinitamente separados, se considera que tienen energía cero, pero a medida que se acercan existen fuerzas de atracción (entre el e de un átomo y el p+ del otro), y fuerzas de repulsión, (entre las dos nubes electrónicas). Al principio las fuerzas de atracción son superiores a las de repulsión por lo que al acercarse se libera energía, pero llega un momento en el que las repulsiones empiezan a tener importancia y cuesta cada vez más acercarlos. Es decir, que la curva pasa por un mínimo y la distancia a la que se produce es la distancia de enlace que para la molécula de H2 es de 0'74 Aº.
La molécula de Hidrógeno presenta una energía menor a la de los átomos separados (que es una condición indispensable para que exista enlace). En este caso los dos átomos de Hidrógeno adquieren configuración electrónica de gas noble.

enlace covalente

Un enlace covalente se produce por el compartimiento de electrones entre dos o más átomos. La diferencia de electronegatividades entre los átomos no es suficientemente grande como para que se efectúe una transferencia de electrones. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos o no metales

enlace ionico

La definición química de un enlace iónico es la una unión de átomos que resulta de la presencia de atracción electrostática entre los iones de distinto signo, es decir, uno fuertemente electropositivo (baja energía de ionización) y otro fuertemente electronegativo (alta afinidad electrónica). Eso se da cuando en el enlace, uno de los átomos capta electrones del otro.